当前位置:首页 > 代码 > 正文

卡尔曼滤波定位解算matlab代码(粒子滤波目标跟踪算法matlab)[20240506更新]

admin 发布:2024-05-06 08:39 144


本篇文章给大家谈谈卡尔曼滤波定位解算matlab代码,以及粒子滤波目标跟踪算法matlab对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

连续系统卡尔曼滤波的Matlab程序

%% 连续空间系统状态方程

% X_dot(t) = A(t)*X(t) + B(t)*W(t)

%% 转化为离散时间系统状态方程

% X(k+1) = F*X(k) + G*W(k)

T = 0.1;% T为采样时间间隔

[F,G]=c2d(A,B,T);

基于Matlab,用Kalman滤波实现线性变化的电压测量滤波处理。

%卡尔曼滤波

clear

N=800;

w(1)=0;

w=randn(1,N)

%系统预测的随机白噪声

x(1)=0;

a=1;

for

k=2:N;

x(k)=a*x(k-1)+w(k-1);

%系统的预测值

end

V=randn(1,N);

%测量值的随机白噪声

q1=std(V);

Rvv=q1.^2;

q2=std(x);

Rxx=q2.^2;

q3=std(w);

Rww=q3.^2;

c=0.2;

Y=c*x+V;

%测量值

p(1)=0;

s(1)=0;

for

t=2:N;

p1(t)=a.^2*p(t-1)+Rww;

%前一时刻X的相关系数

b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);

%卡尔曼增益

s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));

%经过滤波后的信号

p(t)=p1(t)-c*b(t)*p1(t);%t状态下x(t|t)的相关系数

end

figure(1)

plot(x)

title('系统的预测值')

figure(2)

plot(Y)

title('测量值')

figure(3)

plot(s)

title('滤波后的信号')

下面卡尔曼滤波的matlab程序语句,请问每个语句是什么意思呀?

%这个问题我已经回答过了,下面是我以前的回复

clear

N=200;%取200个数

w(1)=0;

w=randn(1,N);%产生一个1×N的行向量,第一个数为0,w为过程噪声(其和后边的v在卡尔曼理论里均为高斯白噪声)

x(1)=0;%状态x初始值

a=1;%a为状态转移阵,此程序简单起见取1

for k=2:N

x(k)=a*x(k-1)+w(k-1); %系统状态方程,k时刻的状态等于k-1时刻状态乘以状态转移阵加噪声(此处忽略了系统的控制量)

end

V=randn(1,N);%测量噪声

q1=std(V);

Rvv=q1.^2;

q2=std(x);

Rxx=q2.^2; %此方程未用到Rxx

q3=std(w);

Rww=q3.^2; %Rvv、Rww分别为过程噪声和测量噪声的协方差(此方程只取一组数方差与协方差相同)

c=0.2;

Y=c*x+V;%量测方差,c为量测矩阵,同a简化取为一个数

p(1)=0;%初始最优化估计协方差

s(1)=0;%s(1)表示为初始最优化估计

for t=2:N

p1(t)=a.^2*p(t-1)+Rww;%p1为一步估计的协方差,此式从t-1时刻最优化估计s的协方差得到t-1时刻到t时刻一步估计的协方差

b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);%b为卡尔曼增益,其意义表示为状态误差的协方差与量测误差的协方差之比(个人见解)

s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));%Y(t)-a*c*s(t-1)称之为新息,是观测值与一步估计得到的观测值之差,此式由上一时刻状态的最优化估计s(t-1)得到当前时刻的最优化估计s(t)

p(t)=p1(t)-c*b(t)*p1(t);%此式由一步估计的协方差得到此时刻最优化估计的协方差

end

t=1:N;

plot(t,s,'r',t,Y,'g',t,x,'b');%作图,红色为卡尔曼滤波,绿色为量测,蓝色为状态

%整体来说,此卡尔曼程序就是一个循环迭代的过程,给出初始的状态x和协方差p,得到下一时刻的x和p,循环带入可得到一系列的最优的状态估计值,此方法通常用于目标跟踪和定位。

%本人研究方向与此有关,有兴趣可以交流下

请大家奉献一个效果好的卡尔曼滤波的matlab程序,最好有说明,重谢!

我现在也在研究kalman,这是最新发现的一个程序,我做的标注,有问题一块研究

function [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin)

% Kalman filter.

% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...)

%

% INPUTS:

% y(:,t) - the observation at time t 在时间t的观测

% A - the system matrix A 系统矩阵

% C - the observation matrix C 观测矩阵

% Q - the system covariance Q 系统协方差

% R - the observation covariance R 观测协方差

% init_x - the initial state (column) vector init_x 初始状态(列)向量

% init_V - the initial state covariance init_V 初始状态协方差

%

% OPTIONAL INPUTS (string/value pairs [default in brackets]) 选择性输入(字符串/值 对【默认在括号中】)

% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ] 在时间t,m意味着利用 m模型参数 [ones(1,T) ]

%

% In this case, all the above matrices take an additional final

% dimension, 在这种情况下,上述矩阵采用附加的维数

% i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m). 例如

% However, init_x and init_V are independent of model(1).

% init_x and init_V相对于模型1是独立的

% 'u' - u(:,t) the control signal at time t [ [] ]

% 在时间t的控制信号

% 'B' - B(:,:,m) the input regression matrix for model m

% 对于模型m的,输入回归矩阵

% OUTPUTS (where X is the hidden state being estimated) 输出(其中X是被估计的隐藏状态)

% x(:,t) = E[X(:,t) | y(:,1:t)]

% V(:,:,t) = Cov[X(:,t) | y(:,1:t)]

% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t = 2

% loglik = sum{t=1}^T log P(y(:,t))

%

% If an input signal is specified, we also condition on it: 如果一个输入信号是特定的,我们的条件

% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)]

% If a model sequence is specified, we also condition on it:

% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)]

[os T] = size(y);

ss = size(A,1); % size of state space

% set default params

model = ones(1,T);

u = [];

B = [];

ndx = [];

args = varargin;

nargs = length(args);

for i=1:2:nargs

switch args{i}

case 'model', model = args{i+1};

case 'u', u = args{i+1};

case 'B', B = args{i+1};

case 'ndx', ndx = args{i+1};

otherwise, error(['unrecognized argument ' args{i}])

end

end

x = zeros(ss, T);

V = zeros(ss, ss, T);

VV = zeros(ss, ss, T);

loglik = 0;

for t=1:T

m = model(t);

if t==1

%prevx = init_x(:,m);

%prevV = init_V(:,:,m);

prevx = init_x;

prevV = init_V;

initial = 1;

else

prevx = x(:,t-1);

prevV = V(:,:,t-1);

initial = 0;

end

if isempty(u)

[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...

kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial);

else

if isempty(ndx)

[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...

kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ...

'initial', initial, 'u', u(:,t), 'B', B(:,:,m));

else

i = ndx{t};

% copy over all elements; only some will get updated

x(:,t) = prevx;

prevP = inv(prevV);

prevPsmall = prevP(i,i);

prevVsmall = inv(prevPsmall);

[x(i,t), smallV, LL, VV(i,i,t)] = ...

kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ...

'initial', initial, 'u', u(:,t), 'B', B(i,:,m));

smallP = inv(smallV);

prevP(i,i) = smallP;

V(:,:,t) = inv(prevP);

end

end

loglik = loglik + LL;

end

哪位大神有GPS与捷联惯导组合导航的卡尔曼滤波算法的matlab仿真程序?

在下面的仿真的代码中,理想的观测量不是真实数据,而是自生成的正弦波数据,在真实的应用场景中,应该是一系列的参考数据。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 卡尔曼滤波器在INS-GPS组合导航中应用仿真

% Author : lylogn

% Email : lylogn@gmail.com

% Company: BUAA-Dep3

% Time : 2013.01.06

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 参考文献:

% [1]. 邓正隆. 惯导技术, 哈尔滨工业大学出版社.2006.

clear all;

%% 惯性-GPS组合导航模型参数初始化

we = 360/24/60/60*pi/180; %地球自转角速度,弧度/s

psi = 10*pi/180; %psi角度 / 弧度

Tge = 0.12;

Tgn = 0.10;

Tgz = 0.10; %这三个参数的含义详见参考文献

sigma_ge=1;

sigma_gn=1;

sigma_gz=1;

%% 连续空间系统状态方程

% X_dot(t) = A(t)*X(t) + B(t)*W(t)

A=[0 we*sin(psi) -we*cos(psi) 1 0 0 1 0 0;

-we*sin(psi) 0 0 0 1 0 0 1 0;

we*cos(psi) 0 0 0 0 1 0 0 1;

0 0 0 -1/Tge 0 0 0 0 0;

0 0 0 0 -1/Tgn 0 0 0 0;

0 0 0 0 0 -1/Tgz 0 0 0;

0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0;]; %状态转移矩阵

B=[0 0 0 sigma_ge*sqrt(2/Tge) 0 0 0 0 0;

0 0 0 0 sigma_gn*sqrt(2/Tgn) 0 0 0 0;

0 0 0 0 0 sigma_gz*sqrt(2/Tgz) 0 0 0;]';%输入控制矩阵

%% 转化为离散时间系统状态方程

% X(k+1) = F*X(k) + G*W(k)

T = 0.1;

[F,G]=c2d(A,B,T);

H=[1 0 0 0 0 0 0 0 0;

0 -sec(psi) 0 0 0 0 0 0 0;];%观测矩阵

%% 卡尔曼滤波器参数初始化

t=0:T:50-T;

length=size(t,2);

y=zeros(2,length);

Q=0.5^2*eye(3); %系统噪声协方差

R=0.25^2*eye(2); %测量噪声协方差

y(1,:)=2*sin(pi*t*0.5);

y(2,:)=2*cos(pi*t*0.5);

Z=y+sqrt(R)*randn(2,length); %生成的含有噪声的假定观测值,2维

X=zeros(9,length); %状态估计值,9维

X(:,1)=[0,0,0,0,0,0,0,0,0]'; %状态估计初始值设定

P=eye(9); %状态估计协方差

%% 卡尔曼滤波算法迭代过程

for n=2:length

X(:,n)=F*X(:,n-1);

P=F*P*F'+ G*Q*G';

Kg=P*H'/(H*P*H'+R);

X(:,n)=X(:,n)+Kg*(Z(:,n)-H*X(:,n));

P=(eye(9,9)-Kg*H)*P;

end

%% 绘图代码

figure(1)

plot(y(1,:))

hold on;

plot(y(2,:))

hold off;

title('理想的观测量');

figure(2)

plot(Z(1,:))

hold on;

plot(Z(2,:))

hold off;

title('带有噪声的观测量');

figure(3)

plot(X(1,:))

hold on;

plot(X(2,:))

hold off;

title('滤波后的观测量');

扩展卡尔曼滤波(EKF)算法详细推导及仿真(Matlab)

姓名:王柯祎

学号:20021110373T

转自 :

【嵌牛导读】介绍扩展卡尔曼滤波(EKF)算法的详细推导,局限性和MATLAB仿真。

【嵌牛鼻子】扩展卡尔曼滤波(EKF)

【嵌牛正文】

扩展卡尔曼滤波算法 是解决非线性状态估计问题最为直接的一种处理方法,尽管EKF不是最精确的”最优“滤波器,但在过去的几十年成功地应用到许多非线性系统中。所以在学习非线性滤波问题时应该先从EKF开始。

EKF算法是将非线性函数进行泰勒展开,然后省略高阶项,保留展开项的一阶项,以此来实现非线性函数线性化,最后通过卡尔曼滤波算法近似计算系统的状态估计值和方差估计值。

一、EKF算法详细推导

【注】EKF推导参考的是黄蔚的博士论文“CKF及鲁棒滤波在飞行器姿态估计中的应用研究”,论文中EKF,UKF和CKF等算法讲解的都很详细,值得一看。

我们把KF与EKF算法拿出来对比可以发现:

二、EKF算法局限性:

该算法线性化会引入阶段误差从而导致滤波精度下降,同时当初始状态误差较大或系统模型非线性程度较高时,滤波精度会受到严重影响甚至发散。

需要计算雅克比矩阵,复杂,计算量大,影响系统的实时性,还会导致EKF算法的数值稳定性差。

当系统存在模型失配,量测干扰,量测丢失,量测延迟或状态突变等复杂情况时,EKF算法鲁棒性差。

三、Matlab仿真:

clear all;clc;   close all;

tf = 50; 

Q = 10;w=sqrt(Q)*randn(1,tf); 

R = 1;v=sqrt(R)*randn(1,tf);

P =eye(1);

x=zeros(1,tf);

Xnew=zeros(1,tf);

x(1,1)=0.1; 

Xnew(1,1)=x(1,1);

z=zeros(1,tf);

z(1)=x(1,1)^2/20+v(1);

zjian=zeros(1,tf);

zjian(1,1)=z(1);

for k = 2 : tf

%%%%%%%%%%%%%%%模拟系统%%%%%%%%%%%%%%%

    x(:,k) = 0.5 * x(:,k-1) + (2.5 * x(:,k-1) / (1 + x(:,k-1).^2)) + 8 * cos(1.2*(k-1)) + w(k-1); 

    z(k) = x(:,k).^2 / 20 + v(k);

%%%%%%%%%%%%%%%EKF开始%%%%%%%%%%%%%%%

    Xpre = 0.5*Xnew(:,k-1)+ 2.5*Xnew(:,k-1)/(1+Xnew(:,k-1).^2) + 8 * cos(1.2*(k-1));  

    zjian =Xpre.^2/20;

    F = 0.5 + 2.5 * (1-Xnew.^2)/((1+Xnew.^2).^2);

    H = Xpre/10;    

    PP=F*P*F'+Q; 

    Kk=PP*H'*inv(H*PP*H'+R);

    Xnew(k)=Xpre+Kk*(z(k)-zjian);

    P=PP-Kk*H*PP;

end

  t = 2 : tf;  

 figure;   plot(t,x(1,t),'b',t,Xnew(1,t),'r*');  legend('真实值','EKF估计值');

仿真结果:

关于卡尔曼滤波定位解算matlab代码和粒子滤波目标跟踪算法matlab的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

版权说明:如非注明,本站文章均为 AH站长 原创,转载请注明出处和附带本文链接;

本文地址:http://www.ahzz.com.cn/post/1185.html


取消回复欢迎 发表评论:

分享到

温馨提示

下载成功了么?或者链接失效了?

联系我们反馈

立即下载